Barycentric Subspace Analysis: A New Symmetric Group-Wise Paradigm for Cardiac Motion Tracking
نویسندگان
چکیده
In this paper, we propose a novel approach to study cardiac motion in 4D image sequences. Whereas traditional approaches rely on the registration of the whole sequence with respect to the first frame usually corresponding to the end-diastole (ED) image, we define a more generic basis using the barycentric subspace spanned by a number of references images of the sequence. These subspaces are implicitly defined as the locus of points which are weighted Karcher means of k+ 1 references images. We build such subspace on the cardiac motion images, to get a Barycentric Template that is no longer defined by a single image but parametrized by coefficients: the barycentric coordinates. We first show that the barycentric coordinates the coefficients of the projection of the motion during a cardiac sequence define a meaningful signature for group-wise analysis of dynamics and can efficiently separate two populations. Then, we use the barycentric template as a prior for regularization in cardiac motion tracking, efficiently reducing the error of tracking between end-systole and end-diastole by almost 40% as well as the error of the evaluation of the ejection fraction. Finally, to best exploit the fact that multiple reference images allow to reduce the registration displacement, we derived a symmetric and transitive registration that can be used both for frame-to-frame and frame-to-reference registration and further improves the accuracy of the registration.
منابع مشابه
Barycentric Subspaces Analysis on Spheres
This paper addresses the generalization of Principal Component Analysis (PCA) to Riemannian manifolds. Current methods like Principal Geodesic Analysis (PGA) and Geodesic PCA (GPCA) minimize the distance to a ”Geodesic subspace”. This allows to build sequences of nested subspaces which are consistent with a forward component analysis approach. However, these methods cannot easily be adapted to ...
متن کاملA Fully 3D System for Cardiac Wall Deformation Analysis in MRI Data
This paper presents an enhanced version of our previous algorithm for point-wise tracking and analysis of cardiac motion based on 3D active mesh model. In the present software, a new 3D active surface model based on curve evolution techniques and level sets is used for automatizing the segmentation of endocardial boundary in the left ventricle in the first phase of cardiac cycle. Furthermore, c...
متن کاملBarycentric Subspaces and Affine Spans in Manifolds
This paper addresses the generalization of Principal Component Analysis (PCA) to Riemannian manifolds. Current methods like Principal Geodesic Analysis (PGA) and Geodesic PCA (GPCA) minimize the distance to a ”Geodesic subspace”. This allows to build sequences of nested subspaces which are consistent with a forward component analysis approach. However, these methods cannot be adapted to a backw...
متن کاملAnalysis and Synthesis of Facial Expressions by Feature-Points Tracking and Deformable Model
Face expression recognition is useful for designing new interactive devices offering the possibility of new ways for human to interact with computer systems. In this paper we develop a facial expressions analysis and synthesis system. The analysis part of the system is based on the facial features extracted from facial feature points (FFP) in frontal image sequences. Selected facial feature poi...
متن کاملMultiple Target Tracking With a 2-D Radar Using the JPDAF Algorithm and Combined Motion Model
Multiple target tracking (MTT) is taken into account as one of the most important topics in tracking targets with radars. In this paper, the MTT problem is used for estimating the position of multiple targets when a 2-D radar is employed to gather measurements. To do so, the Joint Probabilistic Data Association Filter (JPDAF) approach is applied to tracking the position of multiple targets. To ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016